EXODE QUICK SHEET

APl COMMANDS:
EXODE MISSIONS VIEW

Version M2a
July 3rd 2024

-How to set up a third party
orogram

OVERVIEW

Setting up your third party program is as simple as sending one API call, which will get a full
JSON package with all possible mission information. In all the mission data:

- The “missionContext” array has all information on the mission location,
- The “teamSlots” array has all information on participating Agents,

- The “animationLog” array has all actions done during the mission itself: be it when

an event is triggered, when someone participated, what rolls were performed, etc.

These three tables should provide you with all important dynamic information, although other
fields in the JSON array can be found of interest to you. Additionally, you can be interested in the
“objectives” which are targets for the mission, “detailedLog”, which has more human-readable
data and logs, or in the “currentEvents” table for information on the events that the mission

received.

Your base process should be to read the animationLog and animate things onscreen

according to what you read.

(1) MAKING YOUR API CALL

We use a small and very simple sample of our own development framework, called
BAYONET, to deliver your API content.

We have our script example in our own mission viewer
(https://exode.io/game/mission-report/js/bayonet network tools demo.js).
Please be reminded that we do not focus on programming structure here.

First you need to set up two global variables:
player_accountName with the account id (ie. elindos)
player_missionld with the mission id (it is a MD5 string)

Then you can use it with:

bayonet apiAction ("ecgPublic", "loadMissionContent",
{"missionId":player missionId, "account":player accountName},
function(feedbackContentOk) {

// your code here in case your data is OK

/]

}, function(feedbackError = “Unknown error”) ({

// your code here in case there is an error
/..

)

You have an example of this currently in our start script.
(https://exode.io/game/mission-report/js/start script.js)

You are authorized to include or copy the network script in your build, and to use the
code above.

https://exode.io/game/mission-report/js/bayonet_network_tools_demo.js
https://exode.io/game/mission-report/js/start_script.js

(2) INTERPRETING RECEIVED DATA

“missionContext”

Mission context is an array which you are not forced to use but which has relevant procedural data
created when the user received the mission in the first place.

It is also, actually, actively used during events and during the last steps when the colony leader
performs his “Mission Review”.

Almost all of this data is actually “persisting”: your mission location was generated with its
attributes, its colony leader, its planetary type and dangers. Some attributes can be modified or
used during the mission itself.

The missionContext will evolve during later versions. It currently has one immense attribute called
“location” with everything else inside it.

The location has:

an id (a MD5 string),

a name array (with any name array, you can use [“name”][“firstName”] or [“name”][“lastName”] for
the full name, or directly [“name”][“name”))

and an attributes array.

Attributes are where things get interesting.

You will really want to read the leader_data information, and his name, tastes, and of course face
picture (leader_data[“faceUrI”]).

- T AEIST T . SHai
= {} missionContext
={ }1ocation
o id: " 12420542872612bc9d525"
= {} name
o firstName : ™"

® |astMame : "Baubuismite”
® name - "Baubuismite™
u type : “colony”
={} attributes
w {} tite
W sireet_type : "settiement”
u prefix_title : "planet”
& {} planet_name
® planet_nftid - "f284ec9b3echcdc307 178424742706
® planet_type : 1025
2 {}1eader_data
@{)name
® nft_id : "ec2d5102c0850c4aa6866fed4d837665"
[Jtastes
W gender: 1
® faceBase : "male_3_256.png”
® facelndex - 3
W faceUr : “hitps./s it rormalimale_3_256.png™
@ {) characters
® population_iotal - 26
2 {} task_torce
W doctrine - "prison_camp"
@[]dangers
W player_reputation - -4
® well_being : 24

We often use https.//jsonviewer.stack.hu/ for presenting a JSON package, but you can use
anything you fancy as there are many JSON beautifiers available on the internet.

https://jsonviewer.stack.hu/

(3)INTERPRETING RECEIVED DATA

“teamSlots”

The teamSlots array has one line for every opened agent slot on a mission ; if there is an agent
assigned, then the corresponding line will have some other data such as:

Property Example value

Description

asset_role colonyConstruction

Builder

This is the code of the role the player has decided
to assign to this Agent.

It is one of the codes allowed for this slot
(“possibleRoles”) .

asset_globalid exode_card_004_off

icerWeapons

A “globalid” is an EXODE identifier of a card
template id. This is normally what represents most
of your Agent base abilities and upgrades options.

There are hundreds of card templates in EXODE, and
they usually are represented with exode card XXX
for EXODE cards, for instance.

asset_character Array

This one has a lot of attributes, some of which
could be removed, taken from the global template
and added from instant character generation.

The mission system generated an EXODE character
with fixed average rolls to determine skill values.

The mission system then made use of the character
skill values and traits when participating in
events and making rolls.

So the fact the mission system also copies the
generated Agent data used for these rolls is just
some form of technical curtesy.

asset_nbDice 3

This is the number of dice the Agent will use
during the mission

asset_nbDice_average 3

Not used at the moment. It is the number of dice,
but determined from skill values with another
system.

missionEnergy 100

These values should be the attribute that the Agent
started with in the mission.

You should use the “picture_url” of the asset_character and other information to represent the

Agent during the mission.

(4)INTERPRETING RECEIVED DATA

“animationLog”

This is definitely the most important data for animating your mission view.

The animationLog has every single action or event relevant to mission execution, an index of

who did it and what rolls were made.

Note : this data will evolve A LOT during later iterations of missions. You have been warned!

Code Other data

Description

event index in
currentEvents (ie
0

startMajorEvent

Means that an EVENT is triggered.

Once an EVENT is launched your sequence should
switch to EVENT RESOLUTION actions, detailed
further below, until you receive an
“endMajorEvent”.

Usually during an event, Agents face a challenge,
will take decisions, make rolls to succeed and
decisions will have effects on the mission.

event index in
currentEvents

endMajorEvent

Means that current EVENT RESOLUTION should end and
you can now switch to normal mission resolution.

teamSlots (ie. 0)
or objective index
in objectives

focusOnTeamSlot slot index in This one has no effect but just to warn you that an
teamSlots (ie. 0) Agent is going to take the next action.
In our official mission viewer, we use this to
reduce opacity of other agents and put some focus
on the main one.
makeRolls slot index in The character at this index is rolling a number of
teamSlots (ie. 0) dice. This usually means that he is testing one of
his MISSION ROLE abilities.
rolls made (array)
with value, and is
it a success (true
or false), and
total successes
value
actionMessage slot index in This announces what the character is doing, in
teamSlots (ie. 0) clear text.
message (string)
nextRound Means we get to current round + 1. The mission has
rounds and some objectives must be completed within
a set timer.
(effects) slot index in There are many codes which can be used for mission

effects.

Usually they are spread between buffs and
progression on objectives. You usually have an
actionMessage next which explains what happened ;
unless it is “progressionOnTask” which means we
progressed on an objective

completedTask

objective index in
objectives

Means that one of the objectives is done for,
get to the next one, if any.

SO we

completedMission

Means the current mission is a SUCCESS.

In case of colony support, this also is normally
followed by the MISSION REVIEW by colony leader.

failedMission

Normally means that the current mission is a
FAILURE.

In case of colony support, this also is normally
followed by the MISSION REVIEW by colony leader.

reviewingTaste

taste index in
“tastes” of
leader_data

taste code (ie.
faction,
criticalQuality,
fastSpeed, etc)

Means that the colony leader is reviewing the
mission according to one of his tastes.

completedMissionGainRepu
tation

positive or
negative value

This means that according to review, player
reputation is directly affected by the value.

EVENT RESOLUTION

Code

Other data

Description

agentPicksDecisionCode

slot index in
teamSlots (ie. 0)

decision code from
currentEvents
available
decisions

Means that according to his skills and traits, , an
Agent decided to participate in the EVENT by taking
the mentioned decision.

If several decisions are possible for an Agent
(he/she has an equal preference for any) then one
decision among them was already randomly picked.

agentPicksDecisionAtInde
X

slot index in
teamSlots (ie. 0)

decision index
from currentEvents
available
decisions

Duplicate of above, but uses decision index instead
of decision code, so maybe it can be more practical
to you.

agentDecisionSuccessChan
ces

slot index in
teamSlots (ie. 0)

chances value (in
percentage)

This means that the Agent will have the mentioned
chances to succeed in the decision he took.

(decision outcome)

slot index in
teamSlots (ie. 0)

roll which was
made (with a d100)

The results of a decision is usually one of:

“agentDecisionIsCriticalSuccess”
“agentDecisionIsSuccess”
“agentDecisionIsAutoSuccess”
“agentDecisionIsFailed”

agentDecisionTextMessage

slot index in
teamSlots (ie. 0)

message (string)

This announces what the character has been doing
when succeeding or failing at the decision outcome.

(decision effects)

This can be numerous lines in animationLog,
affecting chances for the EVENT to be a success or
not, or giving buffs or debuffs to the team.

During an Event Resolution, Agents make decisions, roll for the results, and this can effect the
global outcome of the Event itself or give mission lasting buffs and debuffs, reputation effects, etc.

The event ends with an “eventEndMessage” mentioning with a string what the outcome was
After this line, a number of event effects occur, until you get the “endMajorEvent” line.

After the “endMajorEvent”, you should get back to normal mission resolution.

At the moment, missions can receive a starting event, and then normal mission resolution begins,
but things can be different in other missions.

Thanks and good luck!

This ends this Quick Sheet for the moment!
Thank you for participating in EXODE Development.

If you have any questions, you can of course ask them out, but please note that we will certainly
be busy working on a new EXODE scene or feature. Do not hesitate, however to make the

community know what you are working on!

Rewards for third parties will also be revealed later: we plan to distribute API keys to developers,
watch how intensive their builds are used by players, and reward them according to usage by all

these accounts.

