
 EXODE QUICK SHEET

 API COMMANDS:
 EXODE MISSIONS VIEW

 Version M2a
 July 3rd 2024

 How to set up a third party
 program

 OVERVIEW

 Setting up your third party program is as simple as sending one API call , which will get a full

 JSON package with all possible mission information. In all the mission data:

 - The “missionContext” array has all information on the mission location,

 - The “teamSlots” array has all information on participating Agents,

 - The “animationLog” array has all actions done during the mission itself: be it when

 an event is triggered, when someone participated, what rolls were performed, etc.

 These three tables should provide you with all important dynamic information, although other

 fields in the JSON array can be found of interest to you. Additionally, you can be interested in the

 “objectives” which are targets for the mission, “detailedLog”, which has more human-readable

 data and logs, or in the “currentEvents” table for information on the events that the mission

 received.

 Your base process should be to read the animationLog and animate things onscreen

 according to what you read.

 (1) MAKING YOUR API CALL

 We use a small and very simple sample of our own development framework, called
 BAYONET, to deliver your API content.

 We have our script example in our own mission viewer
 (https://exode.io/game/mission-report/js/bayonet_network_tools_demo.js).
 Please be reminded that we do not focus on programming structure here.

 First you need to set up two global variables:
 player_accountName with the account id (ie. elindos)
 player_missionId with the mission id (it is a MD5 string)

 Then you can use it with:

 bayonet_apiAction("ecgPublic", "loadMissionContent",
 {"missionId":player_missionId,"account":player_accountName},
 function(_feedbackContentOk) {

 // your code here in case your data is OK

 // …

 }, function(_feedbackError = “Unknown error”) {

 // your code here in case there is an error

 // …

 });

 You have an example of this currently in our start script.
 (https://exode.io/game/mission-report/js/start_script.js)

 You are authorized to include or copy the network script in your build, and to use the
 code above.

https://exode.io/game/mission-report/js/bayonet_network_tools_demo.js
https://exode.io/game/mission-report/js/start_script.js

 (2) INTERPRETING RECEIVED DATA

 “missionContext”

 Mission context is an array which you are not forced to use but which has relevant procedural data
 created when the user received the mission in the first place.

 It is also, actually, actively used during events and during the last steps when the colony leader
 performs his “Mission Review”.

 Almost all of this data is actually “persisting”: your mission location was generated with its
 attributes, its colony leader, its planetary type and dangers. Some attributes can be modified or
 used during the mission itself.

 The missionContext will evolve during later versions. It currently has one immense attribute called
 “location” with everything else inside it.

 The location has:

 an id (a MD5 string),
 a name array (with any name array, you can use [“name”][“firstName”] or [“name”][“lastName”] for
 the full name, or directly [“name”][“name”])
 and an attributes array.

 Attributes are where things get interesting.

 You will really want to read the leader_data information, and his name , tastes , and of course face
 picture (leader_data[“faceUrl”]).

 We often use https://jsonviewer.stack.hu/ for presenting a JSON package, but you can use
 anything you fancy as there are many JSON beautifiers available on the internet.

https://jsonviewer.stack.hu/

 (3) INTERPRETING RECEIVED DATA

 “teamSlots”

 The teamSlots array has one line for every opened agent slot on a mission ; if there is an agent
 assigned, then the corresponding line will have some other data such as:

 Property Example value Description

 asset_role colonyConstruction
 Builder

 This is the code of the role the player has decided
 to assign to this Agent.

 It is one of the codes allowed for this slot
 (“possibleRoles”).

 asset_globalid exode_card_004_off
 icerWeapons

 A “globalid” is an EXODE identifier of a card
 template id. This is normally what represents most
 of your Agent base abilities and upgrades options.

 There are hundreds of card templates in EXODE, and
 they usually are represented with exode_card_XXX
 for EXODE cards, for instance.

 asset_character Array This one has a lot of attributes, some of which
 could be removed, taken from the global template
 and added from instant character generation.

 The mission system generated an EXODE character
 with fixed average rolls to determine skill values.

 The mission system then made use of the character
 skill values and traits when participating in
 events and making rolls.

 So the fact the mission system also copies the
 generated Agent data used for these rolls is just
 some form of technical curtesy.

 asset_nbDice 3 This is the number of dice the Agent will use
 during the mission

 asset_nbDice_average 3 Not used at the moment. It is the number of dice,
 but determined from skill values with another
 system.

 missionEnergy 100 These values should be the attribute that the Agent
 started with in the mission.

 … …

 You should use the “picture_url” of the asset_character and other information to represent the
 Agent during the mission.

 (4) INTERPRETING RECEIVED DATA

 “animationLog”

 This is definitely the most important data for animating your mission view.

 The animationLog has every single action or event relevant to mission execution, an index of
 who did it and what rolls were made.

 Note : this data will evolve A LOT during later iterations of missions. You have been warned!

 Code Other data Description

 startMajorEvent event index in
 currentEvents(ie.
 0)

 Means that an EVENT is triggered.

 Once an EVENT is launched your sequence should
 switch to EVENT RESOLUTION actions, detailed
 further below, until you receive an
 “endMajorEvent”.

 Usually during an event, Agents face a challenge,
 will take decisions, make rolls to succeed and
 decisions will have effects on the mission.

 endMajorEvent event index in
 currentEvents

 Means that current EVENT RESOLUTION should end and
 you can now switch to normal mission resolution.

 focusOnTeamSlot slot index in
 teamSlots (ie. 0)

 This one has no effect but just to warn you that an
 Agent is going to take the next action.

 In our official mission viewer, we use this to
 reduce opacity of other agents and put some focus
 on the main one.

 makeRolls slot index in
 teamSlots (ie. 0)

 rolls made (array)
 with value, and is
 it a success (true
 or false), and
 total successes
 value

 The character at this index is rolling a number of
 dice. This usually means that he is testing one of
 his MISSION ROLE abilities.

 actionMessage slot index in
 teamSlots (ie. 0)

 message (string)

 This announces what the character is doing, in
 clear text.

 nextRound Means we get to current round + 1. The mission has
 rounds and some objectives must be completed within
 a set timer.

 (effects) slot index in
 teamSlots (ie. 0)
 or objective index
 in objectives

 There are many codes which can be used for mission
 effects.

 Usually they are spread between buffs and
 progression on objectives. You usually have an
 actionMessage next which explains what happened ;
 unless it is “progressionOnTask” which means we
 progressed on an objective

 … … …

 completedTask objective index in
 objectives

 Means that one of the objectives is done for, so we
 get to the next one, if any.

 completedMission Means the current mission is a SUCCESS.

 In case of colony support, this also is normally
 followed by the MISSION REVIEW by colony leader.

 failedMission Normally means that the current mission is a
 FAILURE.

 In case of colony support, this also is normally
 followed by the MISSION REVIEW by colony leader.

 reviewingTaste taste index in
 “tastes” of
 leader_data

 taste code (ie.
 faction,
 criticalQuality,
 fastSpeed, etc)

 Means that the colony leader is reviewing the
 mission according to one of his tastes.

 completedMissionGainRepu
 tation

 positive or
 negative value

 This means that according to review, player
 reputation is directly affected by the value.

 … … …

 EVENT RESOLUTION

 Code Other data Description

 agentPicksDecisionCode slot index in
 teamSlots (ie. 0)

 decision code from
 currentEvents
 available
 decisions

 Means that according to his skills and traits, , an
 Agent decided to participate in the EVENT by taking
 the mentioned decision.

 If several decisions are possible for an Agent
 (he/she has an equal preference for any) then one
 decision among them was already randomly picked.

 agentPicksDecisionAtInde
 x

 slot index in
 teamSlots (ie. 0)

 decision index
 from currentEvents
 available
 decisions

 Duplicate of above, but uses decision index instead
 of decision code, so maybe it can be more practical
 to you.

 agentDecisionSuccessChan
 ces

 slot index in
 teamSlots (ie. 0)

 chances value (in
 percentage)

 This means that the Agent will have the mentioned
 chances to succeed in the decision he took.

 (decision outcome) slot index in
 teamSlots (ie. 0)

 roll which was
 made (with a d100)

 The results of a decision is usually one of:

 “agentDecisionIsCriticalSuccess”
 “agentDecisionIsSuccess”
 “agentDecisionIsAutoSuccess”
 “agentDecisionIsFailed”

 agentDecisionTextMessage slot index in
 teamSlots (ie. 0)

 message (string)

 This announces what the character has been doing
 when succeeding or failing at the decision outcome.

 (decision effects) This can be numerous lines in animationLog,
 affecting chances for the EVENT to be a success or
 not, or giving buffs or debuffs to the team.

 During an Event Resolution, Agents make decisions, roll for the results, and this can effect the
 global outcome of the Event itself or give mission lasting buffs and debuffs, reputation effects, etc.

 The event ends with an “eventEndMessage” mentioning with a string what the outcome was

 After this line, a number of event effects occur, until you get the “endMajorEvent” line.
 After the “endMajorEvent”, you should get back to normal mission resolution.

 At the moment, missions can receive a starting event, and then normal mission resolution begins,
 but things can be different in other missions.

 Thanks and good luck!

 This ends this Quick Sheet for the moment!

 Thank you for participating in EXODE Development.

 If you have any questions, you can of course ask them out, but please note that we will certainly

 be busy working on a new EXODE scene or feature. Do not hesitate, however to make the

 community know what you are working on!

 Rewards for third parties will also be revealed later: we plan to distribute API keys to developers,

 watch how intensive their builds are used by players, and reward them according to usage by all

 these accounts.

